LADEE mission, apollo lunar samples and innovation space technology grants

Image converted using ifftoany

NASA’s LADEE mission shows the force of meteoroid strikes on lunar exosphere

NASA scientists have released new findings about the moon’s tenuous exosphere – the thin layer of gas surrounding the moon that’s one 25-trillionth the density of Earth’s atmosphere. The data reveal, for the first time, that meteoroid strikes cause a predictable increase in the abundance of two key elements within the lunar exosphere.

Physical processes such as meteoroid stream impacts, the bombardment of helium and hydrogen particles from the sun, thermal absorption, and space weathering constantly modify the moon’s surface as they work within the lunar exosphere. NASA’s Lunar Atmosphere and Dust Environment Explorer, or LADEE, spacecraft observed an increase in exospheric gases when the rain of meteoroid impacts increases during a stream.  These interplanetary grains can hit the lunar surface at speeds exceeding 21 miles (34 kilometers) per second, releasing immense heat, and vaporizing part of the soil and meteoroids themselves.

Read more

NASA announces early stage innovations space technology research grants

NASA has selected 15 university-led proposals for the study of innovative, early stage technologies that address high priority needs of America’s space program.

The Early Stage Innovations awards from NASA’s Space Technology Research Grants Program are worth as much as $500,000 each. Universities have two to three years to work on their proposed research and development projects.

“The agency’s space technology research areas lend themselves to the innovative approaches U.S. universities can offer for solving tough science and exploration challenges,” said Steve Jurczyk, associate administrator for NASA’s Space Technology Mission Directorate in Washington. “NASA’s Early Stage Innovations grants align with NASA’s Space Technology Roadmaps and the priorities identified by the National Research Council, helping enable NASA’s exploration goals including robotic missions to Mars and the outer planets, and ultimately human exploration of Mars.”

Read more

New NASA study reveals origin of organic matter in Аpollo lunar samples

Bean Samples The Ocean of Storms

A team of NASA-funded scientists has solved an enduring mystery from the Apollo missions to the moon – the origin of organic matter found in lunar samples returned to Earth. Samples of the lunar soil brought back by the Apollo astronauts contain low levels of organic matter in the form of amino acids. Certain amino acids are the building blocks of proteins, essential molecules used by life to build structures like hair and skin and to regulate chemical reactions.

Since the lunar surface is completely inhospitable for known forms of life, scientists don’t think the organic matter came from life on the moon. Instead, they think the amino acids could have come from four possible sources. First, since traces of life are everywhere on Earth, the amino acids could be simply contamination from terrestrial sources, either from material brought to the moon by the missions, or from contamination introduced while the samples were being handled back on Earth.

Read more


A job opening for an Aircraft, Commercial Jet Service Engineer, Mitsubishi. The company seeks candidates who are able to be flexible and adjust to Japanese culture. The goal is for English to be the company’s universal language. The job will be focused on developing SE Standard Of Process (SOP) and training materials. More information


Build up your space resume by participating in the project KubOS: KubOS is a small layer in the development process that will allow satellite developers to quickly create mission software for a satellite. KubOS, Open Source Software for Satellites, is built for nano satellites, pico satellites, and cubesats, and it can be scaled for small satellites. More information

Advertisements

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s